gain may be determined using one of the following methods: - (1) As measured at the demodulated output of the receiver: the ratio in dB of the signal-to-noise ratio with the system spreading code turned off to the signal-to-noise ratio with the system spreading code turned on. - (2) As measured using the CW jamming margin method: a signal generator is stepped in 50 kHz increments across the passband of the system, recording at each point the generator level required to produce the recommended Bit Error Rate (BER). This level is the jammer level. The output power of the intentional radiator is measured at the same point. The jammer to signal ratio (J/S) is then calculated, discarding the worst 20% of the J/S data points. The lowest remaining J/S ratio is used to calculate the processing gain, as follows: Gp = (S/N) o + Mj + Lsys, where Gp = processinggain of the system, (S/N) o = signal to noise ratio required for the chosen BER, Mj = J/S ratio, and Lsys = system losses. Note that total losses in a system, including intentional radiator and receiver, should be assumed to be no more than 2 dB. - (f) Hybrid systems that employ a combination of both direct sequence and frequency hopping modulation techniques shall achieve a processing gain of at least 17 dB from the combined techniques. The frequency hopping operation of the hybrid system, with the direct sequence operation turned off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The direct sequence operation of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section. - (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addi- tion, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Note: Spread spectrum systems are sharing these bands on a noninterference basis with systems supporting critical Government requirements that have been allocated the usage of these bands, secondary only to ISM equipment operated under the provisions of part 18 of this chapter. Many of these Government systems are airborne radiolocation systems that emit a high EIRP which can cause interference to other users. Also, investigations of the effect of spread spectrum interference to U. S. Government operations in the 902–928 MHz band may require a future decrease in the power limits allowed for spread spectrum operation. [54 FR 17714, Apr. 25, 1989, as amended at 55 FR 28762, July 13, 1990; 62 FR 26242, May 13, 1997; 65 FR 57561, Sept. 25, 2000] ## § 15.249 Operation within the bands 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHZ, and 24.0–24.25 GHz. (a) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following: | Fundamental frequency | Field
strength of
fundamental
(millivolts/
meter) | Field
strength of
harmonics
(microvolts/
meter) | |---|---|---| | 902–928 MHz
2400–2483.5 MHz
5725–5875 MHz
24.0–24.25 GHz | 50
50
50
250 | 500
500
500
2500 | - (b) Field strength limits are specified at a distance of 3 meters. - (c) Emissions radiated outside of the specified frequency bands, except for ## § 15.251 harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. - (d) As shown in §15.35(b), for frequencies above 1000 MHz, the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. - (e) Parties considering the manufacture, importation, marketing or operation of equipment under this section should also note the requirement in §15.37(d). [54 FR 17714, Apr. 25, 1989, as amended at 55 FR 25095, June 20, 1990] ## § 15.251 Operation within the bands 2.9–3.26 GHz, 3.267–3.332 GHz, 3.339–3.3458 GHz, and 3.358–3.6 GHz. - (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. - (b) The field strength anywhere within the frequency range swept by the signal shall not exceed 3000 microvolts/ meter/MHz at 3 meters in any direction. Further, an AVIS, when in its operating position, shall not produce a 400 field strength greater than microvolts/meter/MHz at 3 meters in any direction within ±10 degrees of the horizontal plane. In addition to the provisions of §15.205, the field strength of radiated emissions outside the frequency range swept by the signal shall be limited to a maximum of 100 microvolts/meter/MHz at 3 meters, measured from 30 MHz to 20 GHz for the complete system. The emission limits in this paragraph are based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. - (c) The minimum sweep repetition rate of the signal shall not be lower than 4000 sweeps per second, and the maximum sweep repetition rate of the signal shall not exceed 50,000 sweeps per second. - (d) An AVIS shall employ a horn antenna or other comparable directional antenna for signal emission. - (e) Provision shall be made so that signal emission from the AVIS shall occur only when the vehicle to be identified is within the radiated field of the system. - (f) In addition to the labelling requirements in §15.19(a), the label attached to the AVIS transmitter shall contain a third statement regarding operational conditions, as follows: - * * * and, (3) during use this device (the antenna) may not be pointed within \pm ** degrees of the horizontal plane. The double asterisks in condition three (**) shall be replaced by the responsible party with the angular pointing restriction necessary to meet the horizontal emission limit specified in paragraph (b). - (g) In addition to the information required in subpart J of part 2, the application for certification shall contain: - (1) Measurements of field strength per MHz along with the intermediate frequency of the spectrum analyzer or equivalent measuring receiver; - (2) The angular separation between the direction at which maximum field strength occurs and the direction at which the field strength is reduced to 400 microvolts/meter/MHz at 3 meters; - (3) A photograph of the spectrum analyzer display showing the entire swept frequency signal and a calibrated scale for the vertical and horizontal axes; the spectrum analyzer settings that were used shall be labelled on the photograph; and, - (4) The results of the frequency search for spurious and sideband emissions from 30 MHz to 20 GHz, exclusive of the swept frequency band, with the measuring instrument as close as possible to the unit under test. [54 FR 17714, Apr. 25, 1989; 54 FR 32340, Aug. 7, 1989] ## § 15.253 Operation within the bands 46.7–46.9 GHz and 76.0–77.0 GHz. (a) Operation within the bands 46.7–46.9 GHz and 76.0–77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems.